

FUEL-SWITCHING HYDRONIC SYSTEMS USING AIR-TO-WATER HEAT PUMPS

ASHRAE WINNIPEG CHAPTER TECHNICAL PRESENTATION, MARCH 16, 2023

Chris DesRoches, P. Eng. Applied Product Manager, HVAC Division Mitsubishi Electric Sales Canada Inc.

chris.desroches@mesca.ca

905-475-3278

www.Climaveneta.ca

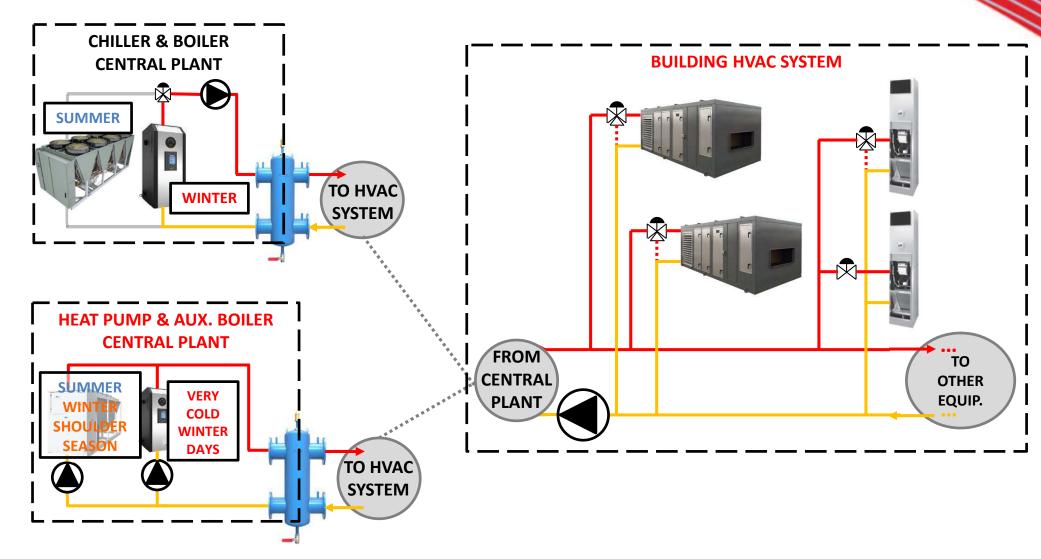
©2022 MITSUBISHI ELECTRIC SALES CANADA INC.

TOPICS

- AIR-TO-WATER HEAT PUMP RECAP
 - TECHNOLOGY OVERVIEW & DESIGN CONSTRAINTS & SIZING METHODOLOGIES
- FUEL-SWITCHING HYDRONIC SYSTEMS
 - ENERGY & GHG EMISSION SAVINGS COMPARISON:
 - ALL-ELECTRIC SYSTEMS VS. BACK-UP NATURAL GAS
 - COST COMPARISON: NATURAL GAS VS. ELECTRIC
- CENTRAL AIR-TO-WATER HEAT PUMP PLANT SIZING & APPLICATIONS
 - 2-PIPE CHANGEOVER SYSTEMS
 - HEAT PUMP CASCADE SYSTEMS (2-PIPE)
 - HYBRID 4-PIPE CENTRAL PLANT
 - HEAT RECOVERY
 - HIGH-TEMPERATURE RETROFITS

LEARNING OBJECTIVES

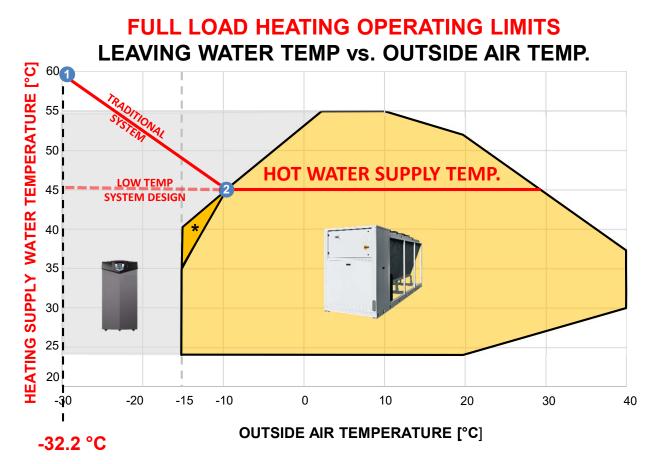
- Understand the concept of fuel-switching and its importance for high efficiency retrofit of existing building central plant systems.
- Learn design strategies and application techniques of using air-to-water heat pump plant equipment.
- Learn about the energy and cost savings, and emission reductions achievable with fuelswitching retrofit of traditional central plant systems with air-to-water heat pumps


REVERSIBLE AIR-TO-WATER HEAT PUMP: OPERATING PRINCIPLE

COOLING MODE HEATING MODE Condenser **Evaporator** Condenser Pressure Heat Output **Work Input Power Input** Evaporator Condenser Enthalpy **Evaporator Coefficient of Performance:** Heat Output (or Watts) COP =

Power Input (Watts)

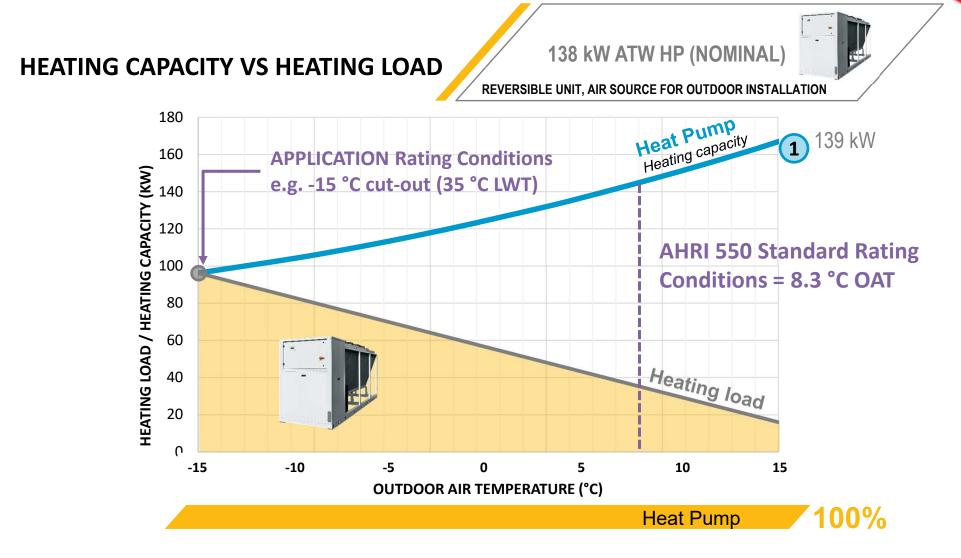
VAPOR-COMPRESSION REFRIGERATION CYCLE (HEATING MODE)


CENTRAL HYBRID HEAT PUMP PLANT

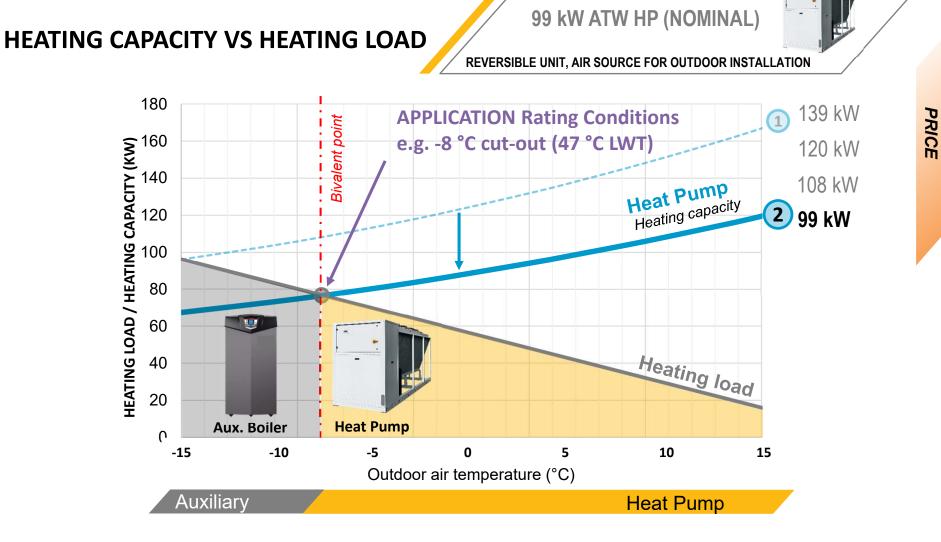
AIR-TO-WATER HEAT PUMP: DESIGN CONSIDERATIONS

- UNDERSTAND THE INFLUENCE OF OUTSIDE AIR TEMPERATURE
- DESIGN HYDRONIC SYSTEM BASED ON HEAT PUMP CAPABILITIES INSTEAD OF FITTING INTO EXISTING DESIGN PRACTICES
- HEAT PUMP PERFORMANCE VARIES WITH OUTSIDE AIR TEMPERATURE:
 - **1. SUPPLY TEMPERATURE REDUCTION (OPERATING ENVELOPE)**
 - 2. CAPACITY REDUCTION
 - 3. COEFFICIENT OF PERFORMANCE REDUCTION

AIR-TO-WATER HEAT PUMP: OPERATING ENVELOPE

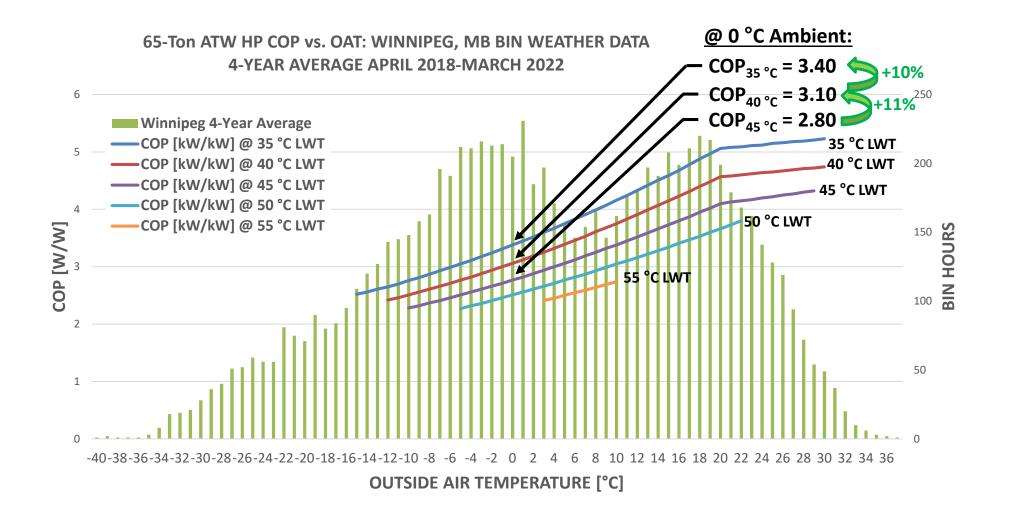


APPLICATION CONSIDERATIONS:


- Select LOWEST DESIGN SUPPLY TEMPERATURE Feasible
- Consider HIGHER BOILER
 SUPPLY WATER TEMPERATURE
 below ASHP cut-out
- Can the Heat Pump meet the HEATING LOAD using a Lower Supply Temp. at Milder Conditions?

Winnipeg Int'l Airport Winter Design Temp (ASHRAE 99.6%D.B.) (ASHRAE 99% D.B. = -29.9 °C)

AIR-TO-WATER HEAT PUMP: SIZING FOR HEATING


AIR-TO-WATER HEAT PUMP: SIZING FOR HEATING

FOOTPRINT

INFLUENCE OF OUTDOOR AIR TEMPERATURE: COP

AIR-TO-WATER HEAT PUMP COP VS. OUTSIDE AIR TEMPERATURE & BIN HOURS

BIN HOUR ANALYSIS FOR WINNIPEG, ON

AUXILIARY BOILER USAGE HOURS BELOW CUT-OUT FOR VARIOUS SUPPLY WATER **TEMPERATURE DESIGN SELECTION POINTS**

Med-High Temp Application

WINNIPEG, MB 4-YEAR AVERAGE BIN WEATHER DATA APRIL 2019 - APRIL 2022							
Temperature Range	4-YEAR AVERAGE ANNUAL HOURS	4-YEAR AVERAGE % OF HOURS					
T < -5 °C	2,529	28.9%					
-5 °C ≤ T ≤ +10 °C	2,986	34.1%					
10 °C < T < 20 °C	2,000	22.8%					
20 °C ≤ T	1,245	14.2%					

Med Temp Application

WINNIPEG, MB 4-YEAR AVERAGE BIN WEATHER DATA APRIL 2019 - APRIL 2022						
Temperature Range	4-YEAR AVERAGE ANNUAL HOURS	4-YEAR AVERAGE % OF HOURS				
T < -10 °C	1,673	19.1%				
-10 °C ≤ T ≤ +10 °C	3,842	43.9%				
10 °C < T < 20 °C	2,000	22.8%				
20 °C ≤ T	1,245	14.2%				

Low Temp Application

WINNIPEG, MB 4-YEAR AVERAGE BIN WEATHER DATA APRIL 2019 - APRIL 2022						
Temperature Range	4-YEAR AVERAGE ANNUAL HOURS	4-YEAR AVERAGE % OF HOURS				
T < -15 °C	1,029	11.7%				
-15 °C ≤ T ≤ +10 °C	4,486	51.2%				
10 °C < T < 20 °C	2,000	22.8%				
20 °C ≤ T	1,245	14.2%				

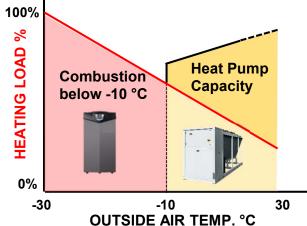
~ 50 °C @ -5 °C Ambient

Total Hours Below -5 °C: 2,529 Hours Total Hours Below -10 °C: 1,673 Hours ~ 45 °C @ -10 °C Ambient

Total Hours Below -15 °C: 1,029 Hours ~ 35 to 40 °C @ -15 °C Ambient

CANADA GREEN BUILDING COUNCIL ZERO CARBON BUILDING DESIGN STANDARD v3 (JUNE 2022)

REQUIREMENTS


ONSITE COMBUSTION LIMIT FOR SPACE HEATING

Space heating systems should be designed to operate without onsite combustion whenever possible. However, to provide greater design flexibility and recognize current technological and financial barriers, some onsite combustion for space heating is permitted.

Projects must be capable of supplying all space heating with installed non-combustion-based technologies at an outdoor air temperature of -10 C or the design temperature, whichever is higher. Space heating technologies whose performance is not directly affected by outdoor air temperature (e.g., ground source heat pumps, electric resistance) must be demonstrated to be able to meet the same fraction of the annual heating demand as an air source heat pump system supported by onsite combustion. at outdoor air temperatures below -10 C.

AUXILIARY COMBUSTION ACCEPTABLE PROVIDED THAT A ZERO CARBON TRANSITION PLAN ADDRESSES FUTURE ELIMINATION OF COMBUSTION BELOW -10°C LIMIT

SOURCE: CANADA GREEN BUILDING COUNCIL ZERO CARBON DESIGN STANDARD VERSION 3, PUBLISHED JUNE 2022. AVAILABLE: <u>CAGBC Zero Carbon Building-Design Standard v3.pdf</u>

CANADA GREEN BUILDING COUNCIL ZERO CARBON BUILDING DESIGN STANDARD v3 (JUNE 2022)

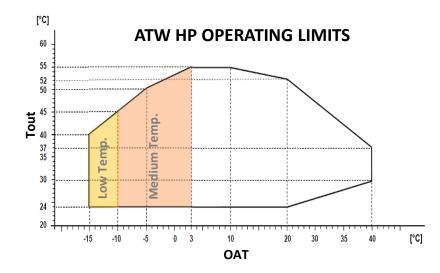
ZERO CARBON TRANSITION PLAN

ZCB-Design projects that use any onsite combustion for space heating or service hot water, regardless of whether zero emissions biofuels are used, must prepare a Zero Carbon Transition Plan. A Zero Carbon Transition Plan is a costed plan that outlines how a building will adapt over time to remove combustion from building operations. A well-crafted plan will leverage the natural intervention points in a building's capital plan, when retrofits would normally be required. ZCB-Design requires that the transition plan address space heating and service hot water.

SOURCE: CANADA GREEN BUILDING COUNCIL ZERO CARBON DESIGN STANDARD VERSION 3, PUBLISHED JUNE 2022. AVAILABLE: <u>CAGBC Zero Carbon Building-Design Standard v3.pdf</u>

²¹ See Section 3.1.3 of the report, available at, <u>www.cagbc.org/decarbonize</u>.

HYBRID CENTRAL HEAT PUMP PLANT APPLICATIONS


AIR-TO-WATER HEAT PUMP APPLICATIONS:

LOW TEMPERATURE HEATING APPLICATIONS:

- Water-Loop Heat Pump (WLHP)
- Radiant In-Floor Heating
- Domestic Hot Water Preheat
- Winter Ventilation OA Preheat, Summer Reheat for Dehumidification
- Snow Melt (in Heating Mode or during Cooling + Desuperheater)

MEDIUM TEMPERATURE HEATING APPLICATIONS:

- Terminal Units (Fan Coils, Cabinet Heaters, etc.)
- Central or Zoned AHU Hydronic Heating Coils
- Domestic Hot Water/Preheat

WATER LOOP HEAT PUMP SYSTEM

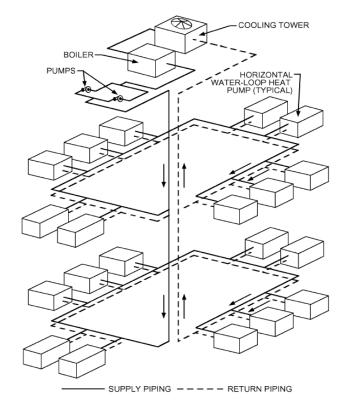
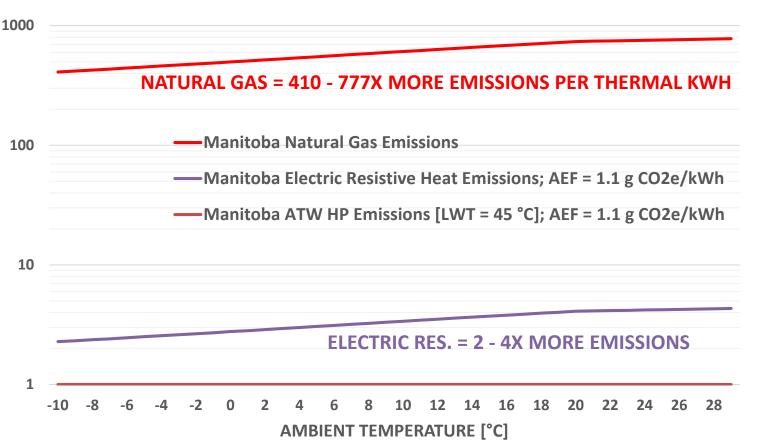


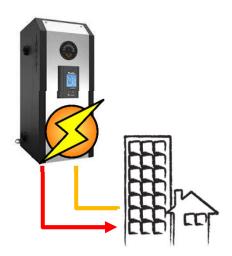
Image Source: ASHRAE HANDBOOK: 2020 HVAC SYSTEMS AND EQUIPMENT Ch. 9 Fig. 30


WHY AIR-TO-WATER HEAT PUMPS FOR HYDRONIC SYSTEMS? EMISSIONS COMPARISON

MANITOBA ELECTRICITY GENERATION: 0.0011 kg CO₂e /kWh

Emissions Ratio for Electric Resistive Heat, Electric Heat Pump & Natural Gas Manitoba: 1.1 g CO2e/kWh Annual Emission Factor (AEF)

SOURCE: ONTARIO MINISTRY OF ENVIRONMENT AND CLIMATE CHANGE'S "GUIDELINE FOR QUANTIFICATION, REPORTING AND VERIFICATION FOR GHG EMISSIONS -JULY 2017", TABLE 400-2

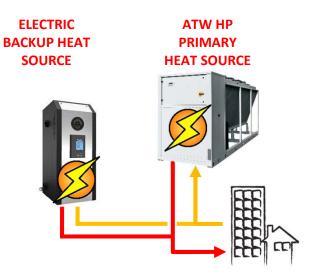


COP OF VARIOUS HEATING TECHNOLOGIES

CONVENTIONAL AIR-TO-WATER NATURAL GAS HEAT PUMP ELECTRIC BOILER BOILER COP < 1COP = 2-4+COP = 1**VARIES ACCORDING BOILER EFFICIENCY & SYSTEM** VARIES ACCORDING TO **RETURN TEMP (FOR CONDENSING GAS BOILERS) OUTSIDE AIR TEMP.** 18-14 NATURAL ELECTRICAL **GAS INPUT INPUT** ELECTRICAL INPUT **1 THERMAL kWh HEATING OUTPUT** Hot Water For Space Heating & DHW

WHAT DOES YOUR LOW-CARBON ELECTRIFIED SOLUTION LOOK LIKE FOR HYDRONIC SYSTEMS?

E-BOILER PRIMARY HEAT SOURCE



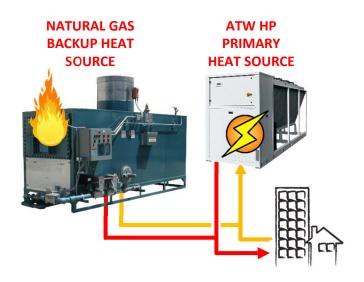
100% ELECTRIC SOLUTION:

- Requires 100% Electric Boiler @ Design Conditions
- Only COP = 1
- Higher Peak Electrical kW (Peak Capacity)
- Backup Generator Sized at Full Electric Boiler kW Load
- Excessive Demand Charges
- Significant Electrical Upgrades for Retrofits
 - Electrical Grids Cannot Support at Scale

WHAT DOES YOUR LOW-CARBON ELECTRIFIED SOLUTION LOOK LIKE FOR HYDRONIC SYSTEMS?

ATWHP + E-BOILER BACKUP

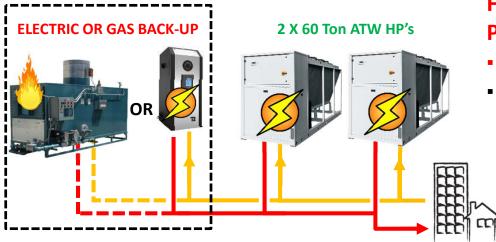
AIR-TO-WATER HEAT PUMP + 100% ELECTRIC SOLUTION:


Cut-out Temperature of ATW Heat Pump Requires 100%
 Clastric Bailer BACKUP © Design Conditions (i.e., 20 °C)

Electric Boiler BACKUP @ Design Conditions (i.e. -30 °C)

- Use Heat Pump For Fuel Switching as Much as Possible to offset
 - Leverage fewer Hours E-Boiler will run (BIN WEATHER)
- Lower kW Input of ATW vs. E-Boiler
 - Backup Capacity still at Peak e-Boiler Peak kW @ COP of 1
- Building Energy Source <u>Fixed</u> to Electric (No Operating Cost Resiliency)

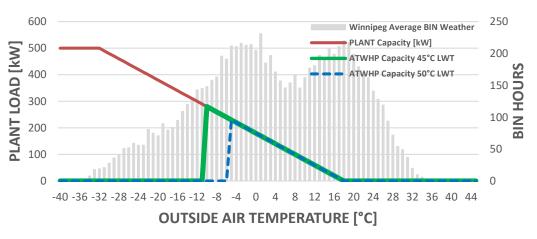
WHAT DOES YOUR LOW-CARBON ELECTRIFIED SOLUTION LOOK LIKE FOR HYDRONIC SYSTEMS?

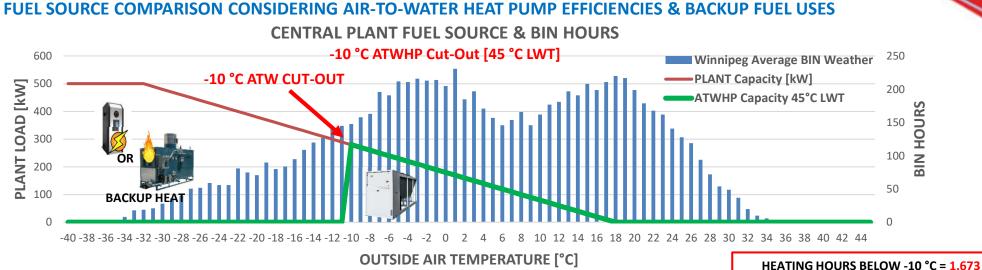

ATWHP + NG BOILER BACKUP

AIR-TO-WATER HEAT PUMP + BACKUP NATURAL GAS

- Cut-out Temperature of ATW Heat Pump Requires 100% Natural Gas
 Boiler BACKUP @ Design Conditions
 - Keep Existing Infrastructure, Extend Existing Boiler Life
- Use Heat Pump For Fuel Switching as Much as Possible
 - Leverage fewer Hours NG-Boiler will run (BIN WEATHER)
- Significantly Reduced Electric Heat Pump Electrical Power Supply
 - (2X Less due to COP)
- Dual Fuel System Provides Resilience & Redundancy for Operating Costs & Carbon Footprint
- No Backup Generator excessive sizing for Electric Boiler @ COP = 1

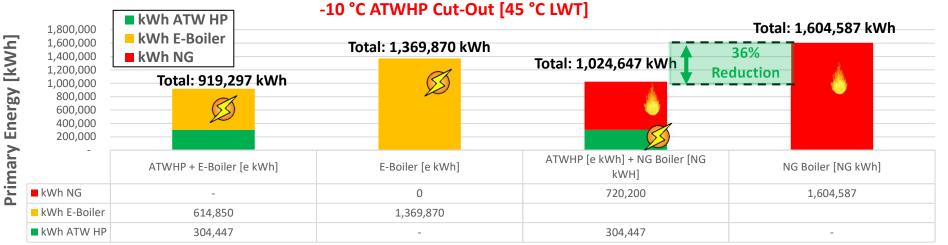
WINNIPEG, MB CENTRAL PLANT HEATING ANALYSIS EXAMPLE: 120 TON CHILLER SYSTEM (2 X 60 TON UNITS)

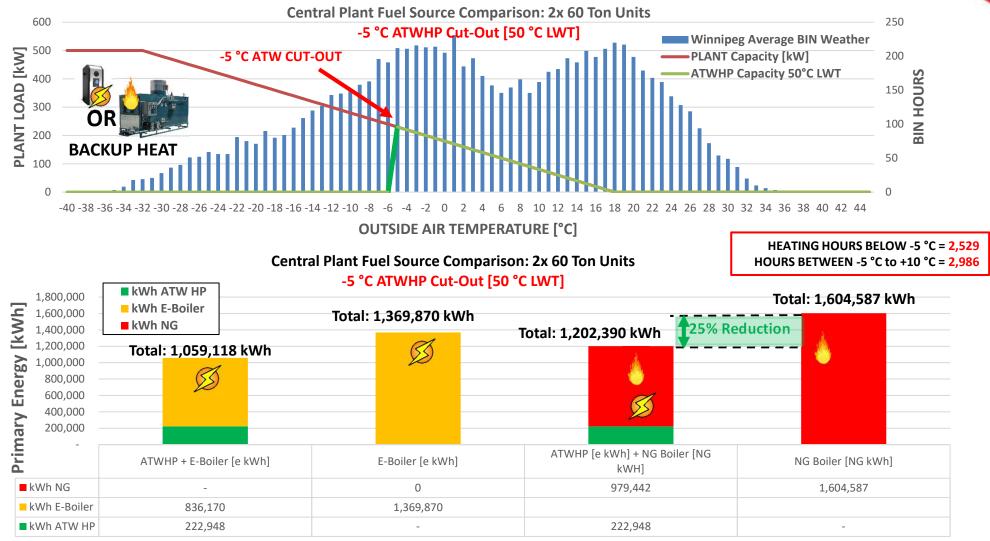



FUEL SOURCE COMPARISON: AIR-TO-WATER HEAT PUMP + BACKUP NATURAL GAS OR ELECTRIC

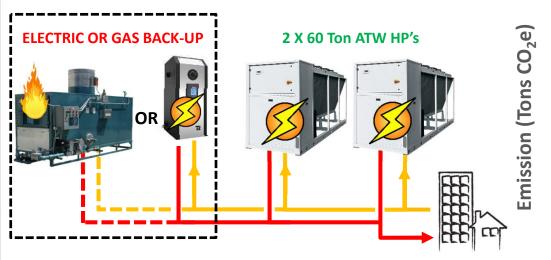
- 430 kW Peak Load Using TWO 60 Ton Air-to-Water Heat Pump Units
- Comparison for Sizing Based on -10 C and 5 C Cut-out Temperature:
 - 40% Propylene Glycol
 - 45 °C LWT / -10 °C Cut-Out → CAP_{RATED} = 135 kW; COP_{RATED} = 2.07
 - 50 °C LWT / -5 °C Cut-out \rightarrow CAP_{RATED} = 110 kW; COP_{RATED} = 2.10

Peak Load [kW]	Ambient Temp. [°C]	Rated Capacity (Each) [kW]	Efficiency COP [W/W]
500	-38	GAS OR ELE	CTRIC AUX.
280	-10	140	2.07
230	-5	115	2.10

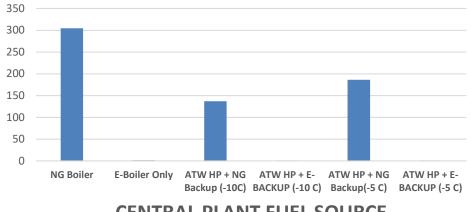

CENTRAL PLANT FUEL SOURCE & BIN HOURS


HOURS BETWEEN -10 °C to +10 °C = 3,842

Central Plant Fuel Source Comparison: 2x 60-Ton ATW HP Units

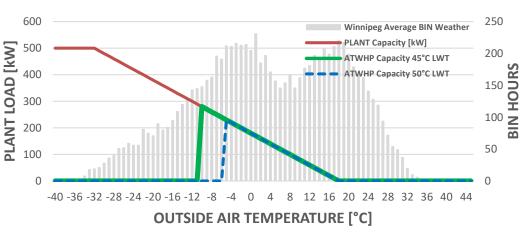

Central Plant Back-Up Type

FUEL SOURCE COMPARISON CONSIDERING AIR-TO-WATER HEAT PUMP EFFICIENCIES & BACKUP FUEL USES



Central Plant Back-Up Type

WINNIPEG, MB CENTRAL PLANT HEATING ANALYSIS EXAMPLE: 120 TON CHILLER SYSTEM (2 X 60 TON UNITS)



Annual Emissions Fuel Source Comparison

CENTRAL PLANT FUEL SOURCE

Peak Load [kW]	Ambient Temp. [°C]	Rated Capacity (Each) [kW]	Efficiency COP [W/W]	Annual Tonnes CO ₂ e Offset (Gas Backup)
500	-38	GAS OR I AU	-	
280	-10	140	2.07	167.7
230	-5	115	2.10	118.5

HOW WILL FOSSIL FUEL PRICES BE AFFECTED IN A LOW-CARBON FUTURE?

FEDERAL CARBON CHARGE: ONTARIO (ENBRIDGE)

https://www.enbridgegas.com/Natural-Gas-and-the-Environment/Enbridge-A-Green-Future/Federal-Carbon-Pricing-Program

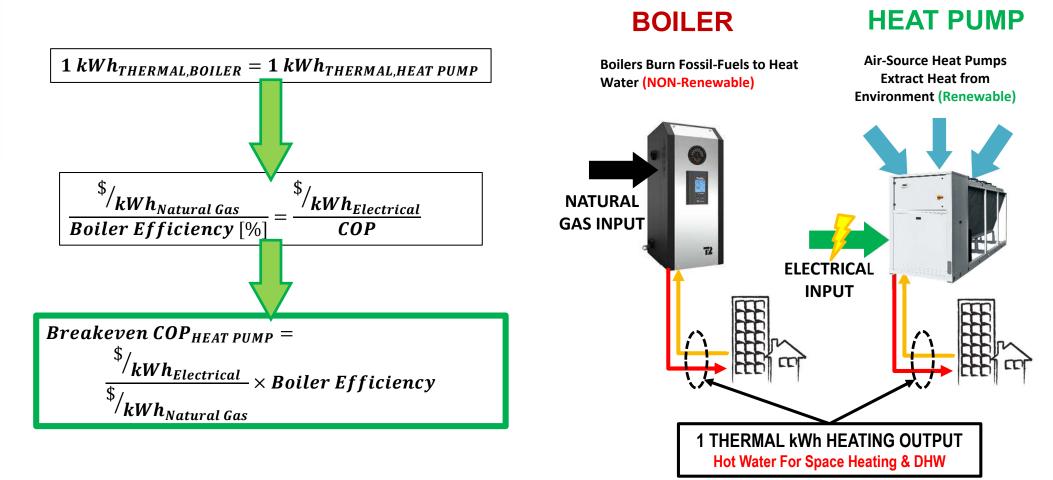
Year	\$/ tCO ₂ e	cents/m ³	
2019	\$20	3.91	
2020	\$30	5.87	
2021	\$40	7.83	
2022	\$50	9.79	

2023-2030 Will see a rise in Carbon Tax by \$15/Ton CO2e, which Translates to ~ 3 ¢ YOY

\$180 ■\$/Ton C02e - Proposed Strengthened Climate Plan [December 11, 2020] \$/Ton C02e Federal Carbon Charge ■ \$/Ton C02e - GHG Pollution Pricing Act [2019 Plan] \$160 3¢YOY \$140 \$120 \$100 2¢YOY \$80 \$60 \$40 \$20 Ś-2021 2022 2023 2024 2025 2026 2019 2020 2027 2028 2029 2030

Government of Canada Proposed Plan – December 11 2020

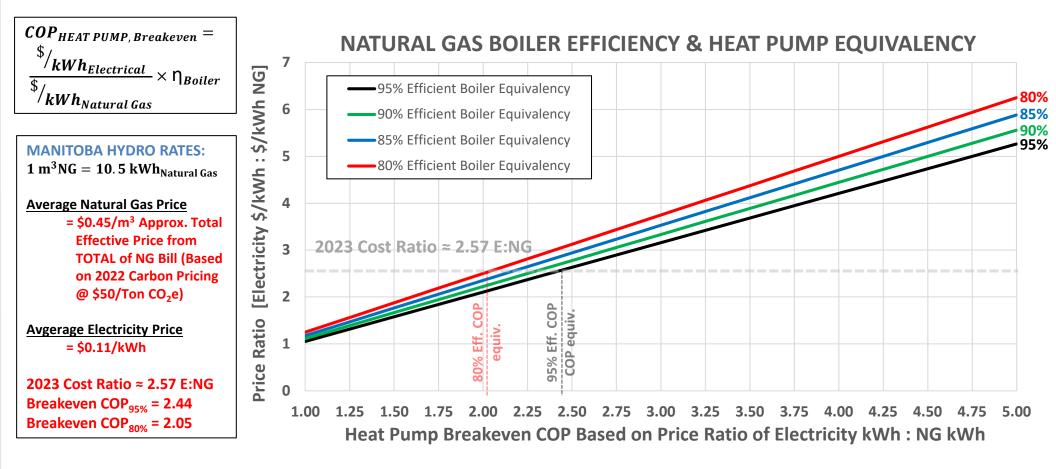
**According to the Plan, if implemented, the Carbon tax will increase by \$15/year until it reaches \$170/ton by 2030


- 1. Source: Ontario Ministry of Environment and Climate Change's "Guideline for Quantification, Reporting and Verification for GHG Emissions July 2017", Table 400-2
- 2. Source: National Inventory Report (NRI) 1990-2014: Greenhouse Gas Sources and Sinks in Canada, Part 3

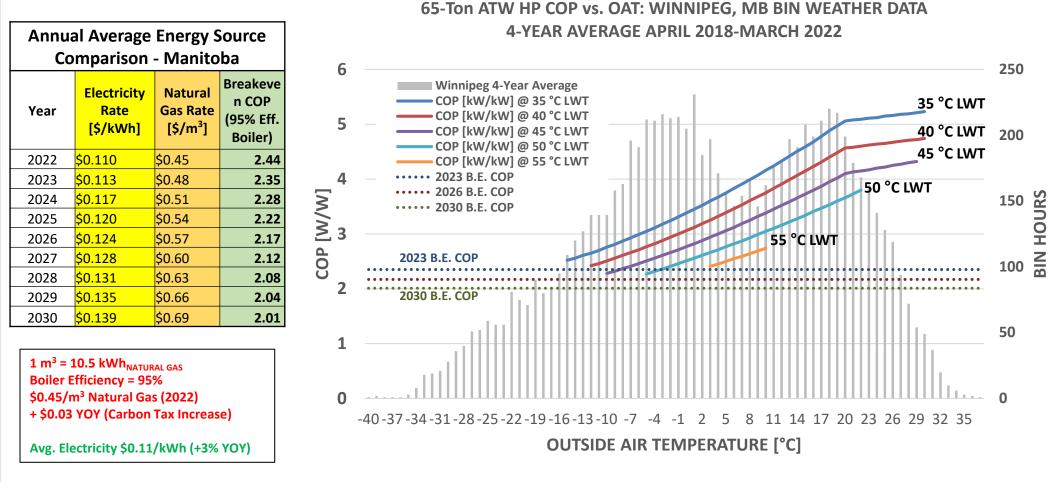
REDUCING GHG EMISSIONS & OPERATING COSTS WITH AIR-TO-WATER HEAT PUMPS

CONVENTIONAL

AIR-TO-WATER


HOW TO COMPARE 1 kWh_{THERMAL} NATURAL GAS TO ELECTRIC HEAT PUMP?

****Above Arithmetic does not account for Electricity Demand Charges**


REDUCING GHG EMISSIONS & OPERATING COSTS WITH AIR-TO-WATER HEAT PUMPS

HOW TO COMPARE **1** kWh_{THERMAL} PROVIDED BY NATURAL GAS OR HEAT PUMP?

****Above Arithmetic does not account for Electricity Demand Charges**

CARBON TAX IMPROVES HEAT PUMP OPERATIONAL COSTS 2022-2030

****Above Arithmetic does not account for Electricity Demand Charges**

MANITOBA HYDRO EXAMPLE – GENERAL SERVICE (SMALL 3-PHASE) AND SMALL COMMERCIAL NATURAL GAS RATE GLASS

NATURAL GAS:

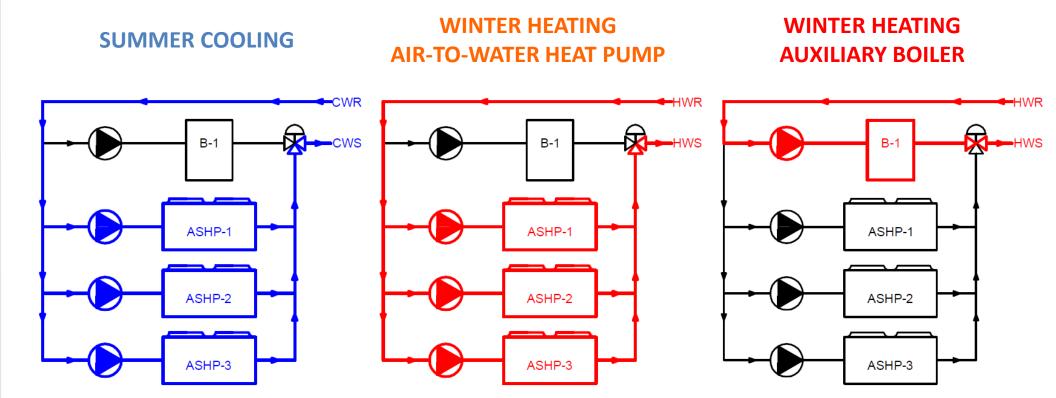
- ~ \$0.1878/m³ (or more) Commodity
- ~ \$0.1213/m³ (or less) Delivery \$0.0979 /m³ (2022 Tax)

Natural Gas Bill	Amount
Total m ³ Usage - NG	727.54
Basic Charge	\$ 14.00
Total Commodity + Delivery of NG	\$ 240.85
Fed Carbon Charge	\$ 71.23
Subtotal (incl. Fed. Carbon Charge)	\$ 326.08
Taxes	\$ 34.15
Total Bill (Incl Taxes)	\$ 360.23
Total \$/m ³ NG (Pre-Tax, Incl. Fed Carbon Charge)	\$ 0.45

				Meter re	eadings /		E	Base pres	sure	Metri	c conver	sion Cu	ibic metres	
-	Service / Pour om / Du	la période To / Au	Days / Jours	Previous /	Present / Nouveau	Usage / Consommati	on ro		nt de	c	r/Facteu onversion nétrique		(m³) / étres cubes (m³)	Reading typ Type de rele
1064050 Jan 20) JAN/23 F	eb 17 FÉV/23	28	257	517	260	X	0.9878	0	x 2	.832784	=	727.538	Estimate Estima
Basic Charge / Rede	evance de	base										\$ 14.00	0	
Gas Commodity (Ce	entra) / Gaz	- prix du pro	duit			318.6	96 r	m³ x	\$0	.2396()	76.3	6	
Gas Commodity (Ce	entra) / Gaz	- prix du pro	duit			408.8	42	Х	0	1878)	76.78	8	
Delivery / Livraison						318.6	96	Х	0	.1196()	38.12	2	
Delivery / Livraison						408.8	42	Х	0	.1213)	49.5	9	
Subtotal / Total parti	iel											254.8	5	
7.00% Prov T	ax / Taxe p	rov.										17.84	4	
5.00% GST /	TPS								_			12.7	5	
Federal Car	bon Charge	e / Redevanc	e fédé	rale sur le	carbone -	727.538 m ⁴	³x\$	0.0979				71.2	3	
5.00% GST or	n Federal C	arbon Charg	e / TPS	sur Redev	/ance féd	érale sur le (carb	one				3.5	6	
			- /											

MANITOBA HYDRO EXAMPLE – GENERAL SERVICE (SMALL 3-PHASE) AND SMALL COMMERCIAL NATURAL GAS RATE GLASS

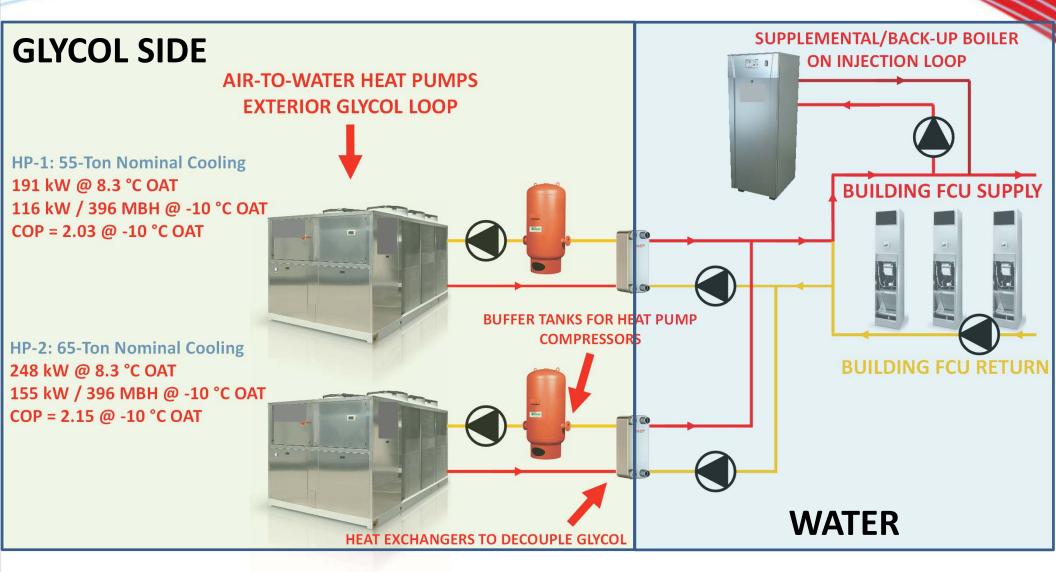
ELECTRICITY: NON-DEMAND RATE LESS Than \$0.095/kWh Use \$0.11 to be Conservative


Meter number /	Service / Po	ur la période	Days /	Meter re Relevés du		Multiplier /	kW.h /	Reading type /
Nº de compteur	From / Du	To / Au	Jours	Previous / Précédent	Present / Nouveau	Multiplicateur	kWh	Type de relevé
944519	Jan 20 JAN/23	Feb 17 FÉV/23	28	24397	24711	1	314	Estimated Estimatif
Basic Charge / R Energy Charge /	edevance de base Frais d'énergie	e		3	314.000 kW.h >	\$0.09485	\$ 33.69 29.78	
Subtotal / Total p	artiel						63.47	
5.00% Cit	y Tax / Taxe mun.						3.18	
7.00% Pro	v Tax / Taxe prov.						4.44	
5.00% GS	T / TPS						3.17	
5.00% GS	T on City Tax / TPS :	sur taxe mun					0.15	
Electricity char	ges / Frais d'élec	tricité						74.41

AIR-TO-WATER CENTRAL PLANT: APPLICATIONS

• 2-PIPE SYSTEMS:

- Simple 2-Pipe Change-Over System
- Cascade Systems
- 4-PIPE HYBRID SYSTEMS using ATW Heat Pumps
- **PARTIAL HEAT RECOVERY** in 2-Pipe & 4-Pipe Systems (Desuperheater)
- DOMESTIC HOT WATER


CENTRAL HEAT PUMP PLANT: 2-PIPE CHANGEOVER COMMERCIAL SYSTEM

FQSF CHILLER UPGRADE: EXISTING CHILLER SYSTEM

FQSF CHILLER UPGRADE: HYBRID CENTRAL HEAT PUMP PLANT

TORONTO MURB CHILLER UPGRADE

TORONTO MURB CHILLER UPGRADE

COST BENEFIT ANALYSIS: FUEL SWITCHING RETROFIT

PROJECT COST SUMMARY

- "Like-for-Like" Scenario based on Budgeted Reserve Fund Study of ageing chiller
- Allowance in reserve fund study for upgraded controls
- Boiler portion from reserve fund applied for retrofit as ATW Heat Pump acts as a boiler in winter.
- Reversible ATW Heat Pump project costs is actual costs at time of tender, including Engineering, Mechanical contractor, Equipment
- Incentives includes:
 - The Atmospheric Fund (TAF) Special Contribution
 - Enbridge Incentive
 - IESO Chiller Rebate (Based on NX-N exceeding IPLV requirement
- Not captured in incentives/contributions is TRCA's STEP Program for measurement & verification
- Anticipated more funding to be available to support similar projects based on Fuel Switching incentives and Enbridge Custom Program, Federal/Provincial Funding Programs

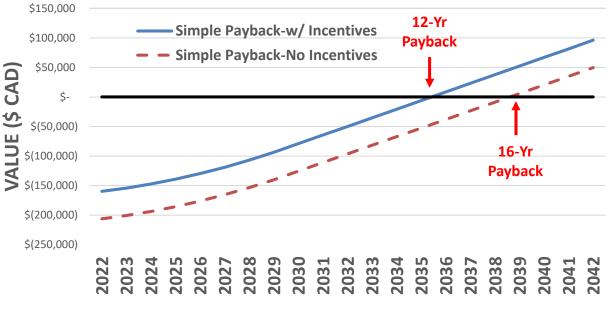
Like-for-Life Budget (Reserve Fund)	
Description	Amount
Air-Cooled Chiller Replacement	\$ 300,000
Heating Boilers - Secondary	\$ 80,000
Mechanical Control System	\$ 20,000
Total:	\$ 400,000

Reversible ATW Central Plant Upgrade	
Description	Amount
Reversible ATW Heat Pumps (Equipment)	\$ 220,000
Installation, Engineering Fees & Ancillary Equipment (Controls, Pumps, Heat Exchangers, Buffer Tanks)	\$ 386,200
Subtotal-Fuel Switch Budget	\$ 606,200

Project Incremental Costs - Chiller Upgrade/Fuel Switch				
Incremental Cost: (Equipment+Install only)	\$	206,200		
Incentives - Actuals	\$	46,500		
Incremental Cost: (Equipment+Install only), Incl. Incentives	\$	159,700		

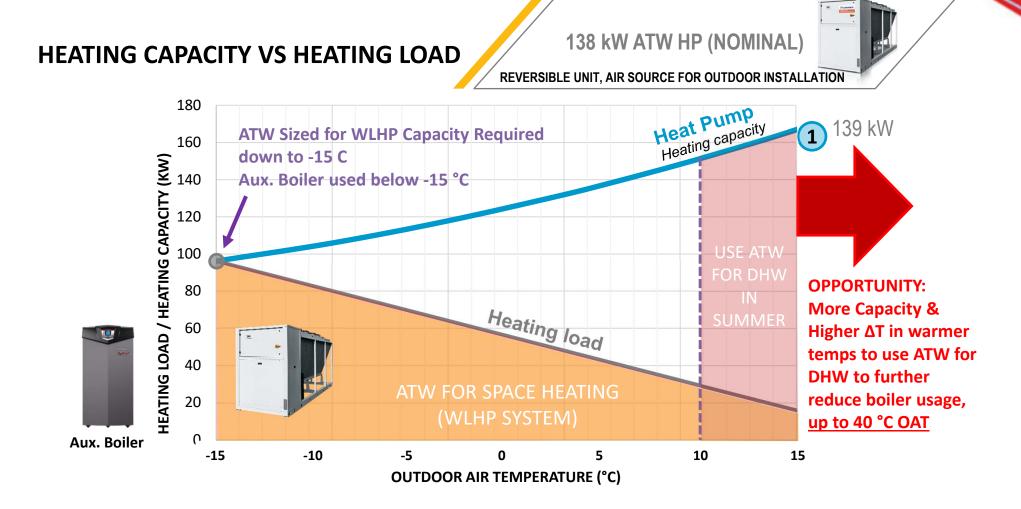
SIMPLE PAYBACK ANALYSIS: FUEL SWITCHING RETROFIT

ENERGY SAVINGS

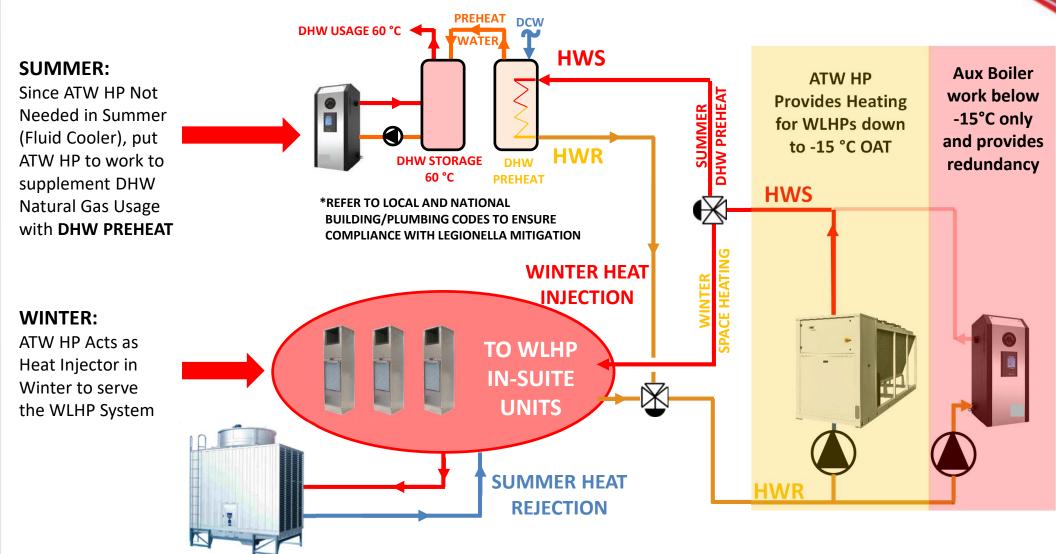

- 45,472 m³ Natural Gas Annual Savings Approved by Enbridge for Custom Incentive
- 85.9 Tons CO₂e Emissions Offset per year (1.888 kg CO₂e/m³ Natural Gas)

Year	\$/Ton CO₂e Carbon Tax	Annaul Avoided Carbon Tax	c	Cumulative Savings
2023	\$ 65	\$ 5,584	\$	5,584
2024	\$ 80	\$ 6,872	\$	12,456
2025	\$ 95	\$ 8,161	\$	20,616
2026	\$ 110	\$ 9,449	\$	30,065
2027	\$ 125	\$ 10,738	\$	40,803
2028	\$ 140	\$ 12,026	\$	52,829
2029	\$ 155	\$ 13,315	\$	66,143
2030	\$ 170	\$ 14,603	\$	80,746
2031	\$ 170	\$ 14,603	\$	95,349
2032	\$ 170	\$ 14,603	\$	109,952
2033	\$ 170	\$ 14,603	\$	124,555
2034	\$ 170	\$ 14,603	\$	139,158
2035	\$ 170	\$ 14,603	\$	153,761
2036	\$ 170	\$ 14,603	\$	168,364
2037	\$ 170	\$ 14,603	\$	182,967
2038	\$ 170	\$ 14,603	\$	197,570

*Savings above are estimates based on natural gas reduction. Does not account for increased efficiencies in summer due to better performance. Performance optimization may contribute to better long-term savings, TBD during M&V.


Project Incremental Costs - Chiller Upgrade/Fuel Switch								
Incremental Cost: (Equipment+Install only)	\$	206,200						
Incentives - Actuals	\$	46,500						
Incremental Cost: (Equipment+Install only), Incl. Incentives	\$	159,700						

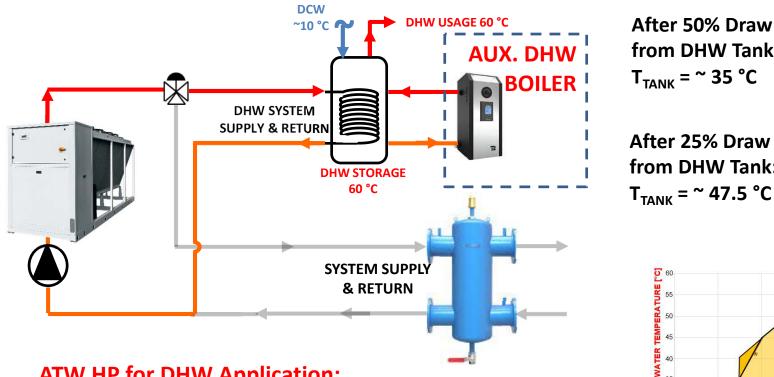
Chiller Upgrade to Reversible ATW Heat Pumps Simple Payback based on Carbon Tax Savings



YEAR

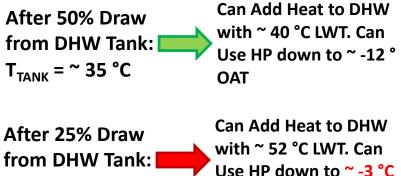
AIR-TO-WATER HEAT PUMP: SIZING FOR HEATING

MAXIMIZING ATW HP USAGE FOR DECARBONIZATION: DHW PREHEATING IN SUMMER

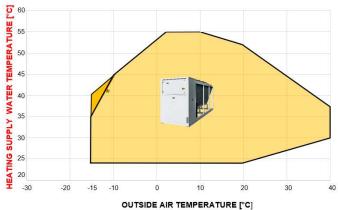

MAXIMIZING ATW HP USAGE FOR DECARBONIZATION: DHW PREHEATING IN SUMMER

WINTER SPACE HEATING DESIGN CONDITIONS VS. SUMMER HEAT PUMP OPERATION: 65-Ton (225 kW Cooling Cap.) Reversible Heat Pump Chiller (250 kW Heating Capacity at Std. AHRI 550 Conditions)

Design Parameter	Winter Design Conditions	Summer DHW Perforn				
Fluid	40% Propylene Glycol Solution					
Flow Rate [L/s]	7.269					
Service	e Space Heating Summer DHW Preheatin					
Ambient Design Temp [°C]	-15	20 30				
Design Supply Water Temp [°C]	35	40 40				
Temperature Difference ΔT [°C]	5	12.1				
Capacity @ 100% Load [kW]	139.5 337.6 [+242%]					
COP [W/W]	2.385	4.373 [+183%] 4.532 [+190%				


DOMESTIC HOT WATER PRODUCTION

DOMESTIC HOT WATER USING INDIRECT STORAGE TANK + SUPPLEMENTAL BOILER



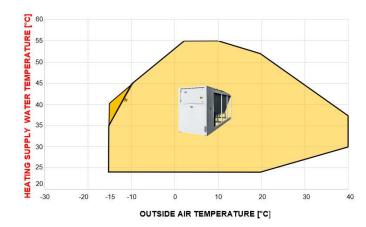
ATW HP for DHW Application:


- **Reduce Boiler work via Heat Pump** ٠
- Ability of Heat Pump to Add Heat to DHW tank is a function of DHW ٠ Tank Temp and Max LWT available from ATWHP according to OAT

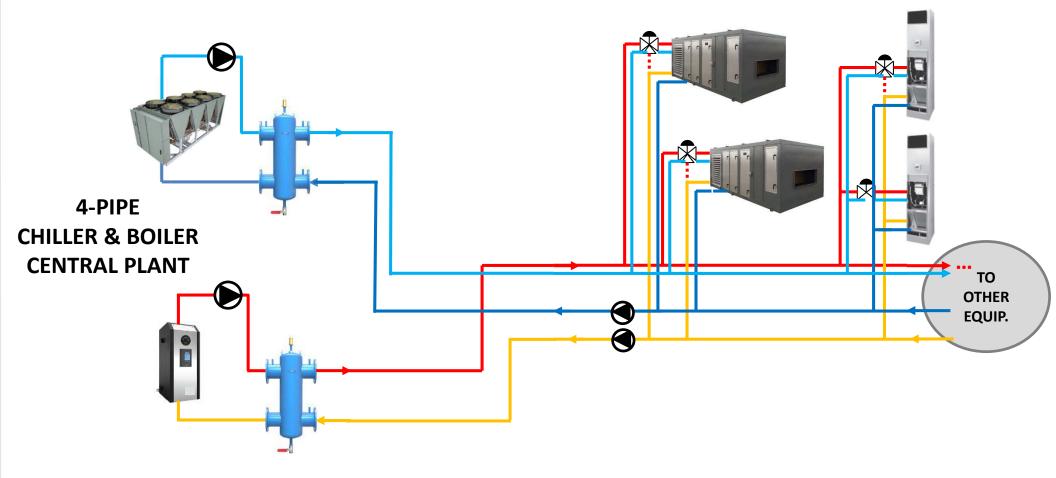
OAT only


DOMESTIC HOT WATER PRODUCTION

DHW PREHEAT BENEFITS

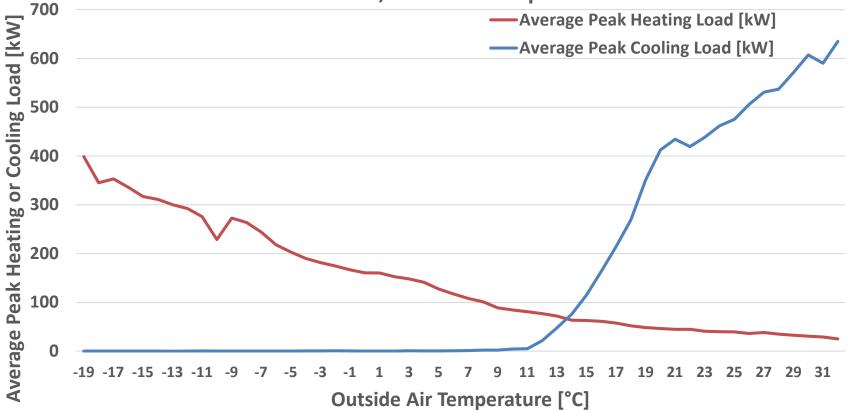

- Reduce Boiler work via Heat Pump
- Preheat Configuration allows the heat pump to add more heat, more often to the DHW system by operating at a lower temperature. Overall offsets more GHG Emissions
- Secondary DHW Tank, boiler then does a lower temperature lift

Looking at the **PREHEAT** Tank:

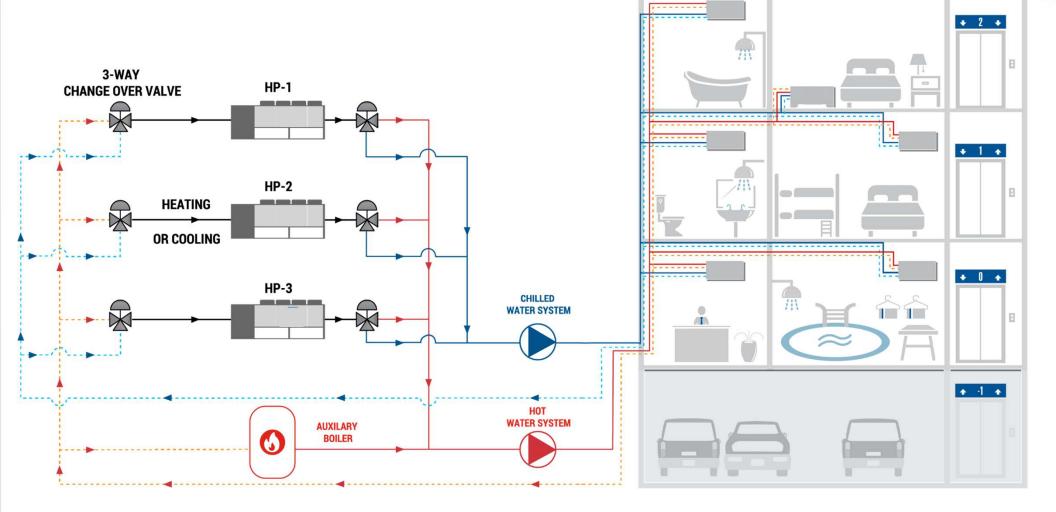

With pre-heated water @ 30 °C, DHW Tank does not drop below 45 °C

4-PIPE FUEL SWITCH RETROFIT

WHAT ABOUT 4-PIPE SYSTEMS?



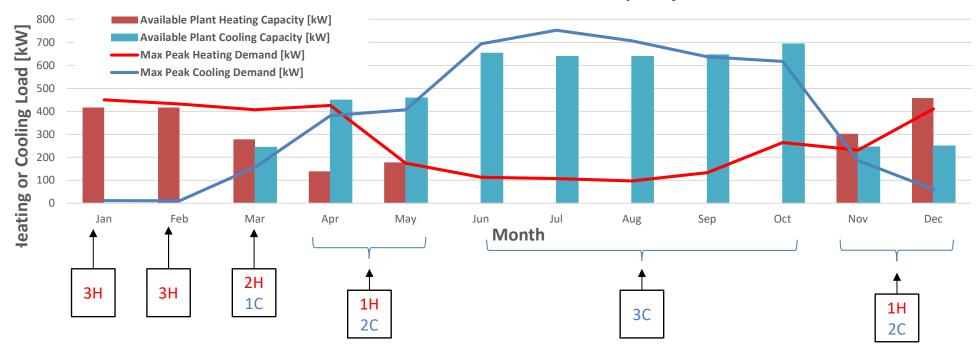
2-PIPE AIR-TO-WATER HEAT PUMPS IN 4-PIPE SYSTEMS


Peak Heating & Cooling Load Profiles

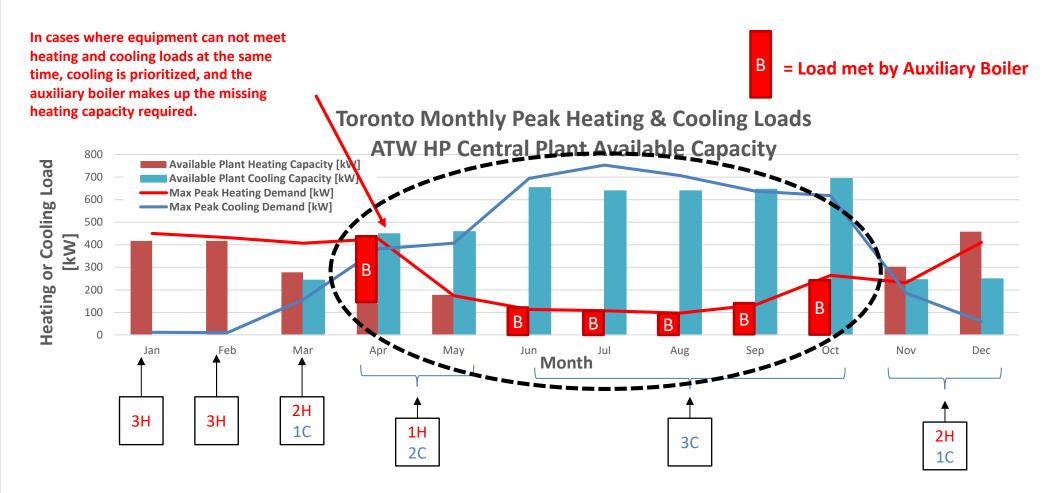
Based on Average Loads at Given Outside Air Temperature

Toronto, Ontario Example

4-PIPE FUEL SWITCH RETROFIT: ENERGY SAVINGS


2-PIPE AIR-TO-WATER HEAT PUMPS IN 4-PIPE SYSTEMS HEATING & COOLING SIMULTANEOUSLY

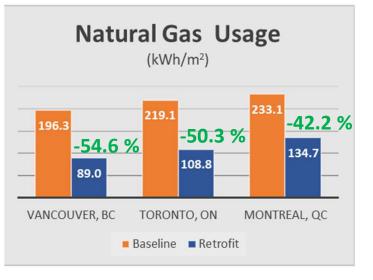
Data Notes:


- Peak Loads shown Reflect Hourly instantaneous peak capacity
- Available Capacities are based on coldest temperature seen during the month for heating, and warmest temperature for cooling
- Where monthly min. Temperature was below -10 °C, available capacity listed is for -10 °C

Building Loads are **DYNAMIC** So must be the **Heat Pump System!**

Toronto Monthly Peak Heating & Cooling Loads ATW HP Central Plant Available Capacity

2-PIPE AIR-TO-WATER HEAT PUMPS IN 4-PIPE SYSTEMS HEATING & COOLING SIMULTANEOUSLY

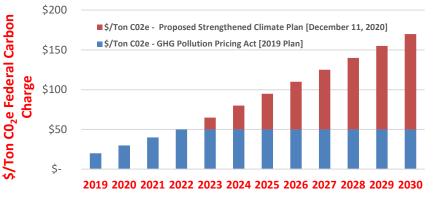

HYBRID 4-PIPE SYSTEM FUEL SWITCH RETROFIT: ENERGY SAVINGS

PRE-RETROFIT										
Vancouver, BC Toronto, ON Montreal, C										
Electric Use Intensity [kwh/m2]	174.0	186.8	186.1							
Natural Gas Use Intensity [kWh/m ²]	196.3	219.1	233.1							
	370.3	405.9	419.2							

POST-RETROFIT										
Vancouver, BC Toronto, ON Montreal, Q										
Electric Use Intensity [kwh/m2]	191.3	201.0	197.9							
Natural Gas Use Intensity [kWh/m ²]	89.0	108.8	134.7							
Total EUI [kwh/m ²]	280.3	309.8	332.6							

GHG Emissions (Metric Tons of CO2 eq.) 436.6 -51.8 % 210.3 VANCOUVER, BC TORONTO, ON MONTREAL, QC

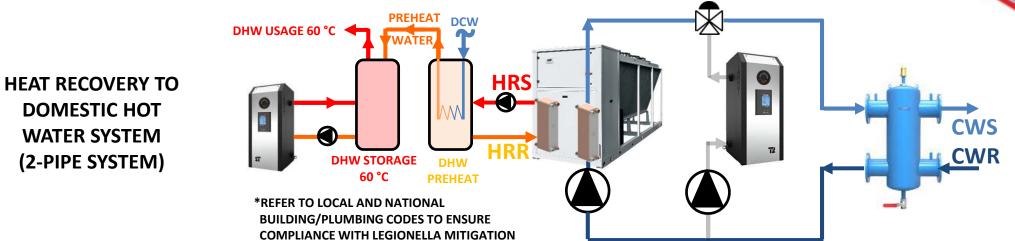
Baseline Retrofit

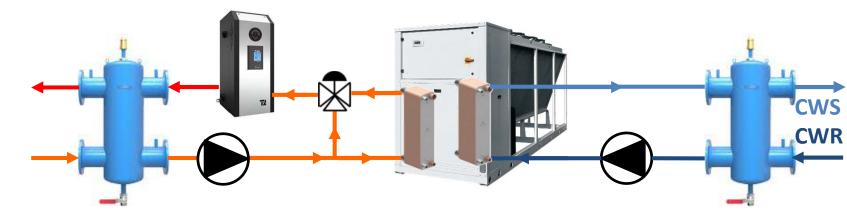


2-PIPE AIR-TO-WATER HEAT PUMPS IN 4-PIPE SYSTEMS HEATING & COOLING SIMULTANEOUSLY

Location	Baseline Emissions [Ton CO ₂ e]	Retrofit Emissions [Ton CO ₂ e]	Annual Tonnes CO₂e offset			
Vancouver	436.6	210.3	226.3			
Toronto	486.5	292.2	194.3			
Montreal	516.2	312.4	203.8			

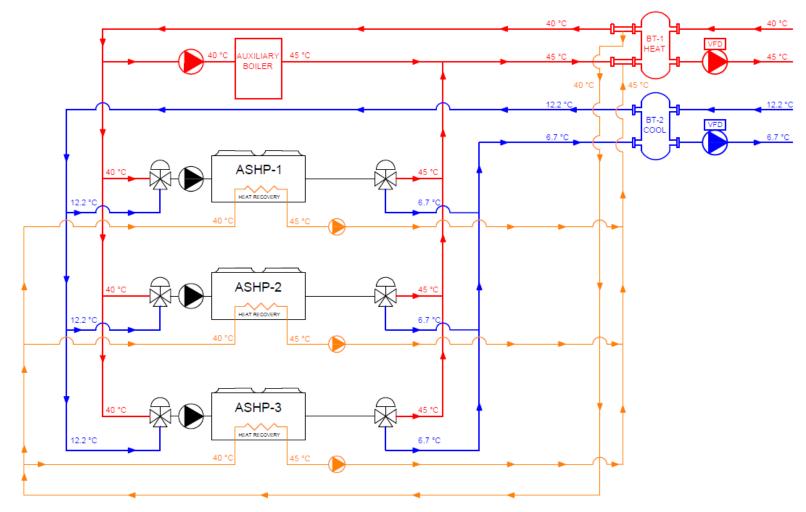
Simple Payback – ATW HP vs. Like-for-Like Repla	cement	
Std. Air-Cooled Chiller \$/Ton	\$	1,200.00
ATW HP \$/Ton	\$	2,000.00
Incremental Cost, \$/Ton	\$	800.00
System Sizing (Tons Nominal)		175
Approximate Incremental Cost over like-for-like replacement	\$	140,328.00


Gov't of Canada Proposed Plan – December 11 2020


**According to the Plan, if implemented, the Carbon tax will increase by \$15/year until it reaches \$170/ton by 2030

Canadian Federal		Vancouver			Toronto			Montreal					
Year			Annual	Cı	umulative		Annual	C	umulative		Annual	Cι	imulative
	CO ₂ e]		Savings Savings		Savings		Savings		Savings		Savings		
2021	\$ 40	\$	9,052	\$	9,052	\$	7,772	\$	7,772	\$	8,152	\$	8,152
2022	\$ 50	\$	11,315	\$	20,367	\$	9,715	\$	17,487	\$	10,190	\$	18,342
2023	\$ 65	\$	14,710	\$	35,077	\$	12,630	\$	30,117	\$	13,247	\$	31,589
2024	\$ 80	\$	18,104	\$	53,181	\$	15,544	\$	45,661	\$	16,304	\$	47,893
2025	\$ 95	\$	21,499	\$	74,679	\$	18,459	\$	64,119	\$	19,361	\$	67,254
2026	\$ 110	\$	24,893	\$	99,572	\$	21,373	\$	85,492	\$	22,418	\$	89,672
2027	\$ 125	\$	28,288	\$	127,860	\$	24,288	\$	109,780	\$	25,475	\$	115,147
2028	\$ 140	\$	31,682	\$	159,542	\$	27,202	\$	136,982	\$	28,532	\$	143,679
2029	\$ 155	\$	35,077	\$	194,618	\$	30,117	\$	167,098	\$	31,589	\$	175,268
2030	\$ 170	\$	38,471	\$	233,089	\$	33,031	\$	200,129	\$	34,646	\$	209,914

PARTIAL HEAT RECOVERY USING DESUPERHEATER



WATER SYSTEM (2-PIPE SYSTEM)

HEAT RECOVERY TO BOILER PRE-HEAT (4-PIPE SYSTEM)

PARTIAL HEAT RECOVERY USING DESUPERHEATER 4-PIPE SYSTEMS

SUMMARY

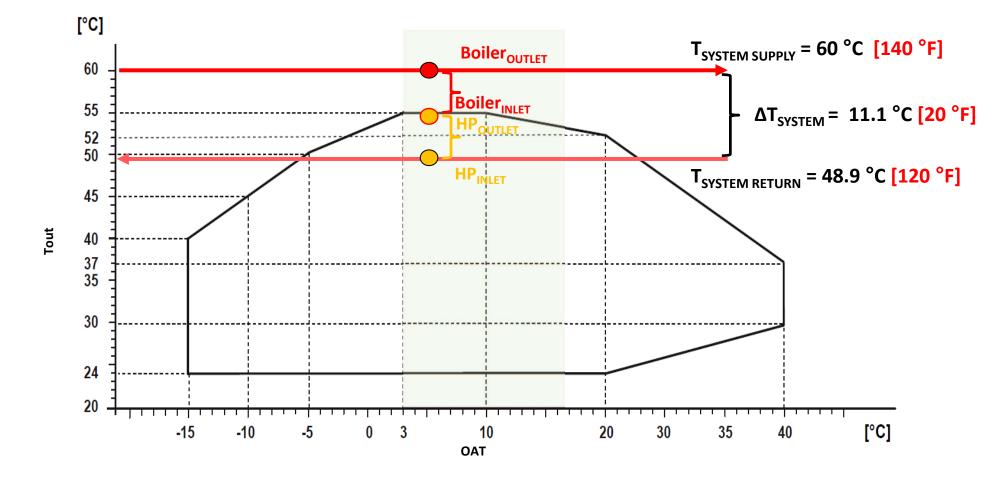
HOLISTIC APPROACH TO MECHANICAL DESIGN IS REQUIRED TO MEET GHG REDUCTION TARGETS

- "ONE-SIZE-FITS-ALL" IS NOT ALWAYS COMPATIBLE WITH LOW CARBON
- SIGNIFICANT SAVINGS CAN BE ACHIEVED WHILE USING CURRENT ATW TECHNOLOGY WITHIN LIMITATIONS
- REDUCED OPERATING TEMP = INCREASED EFFICIENCY + FACILITATED INTEGRATION

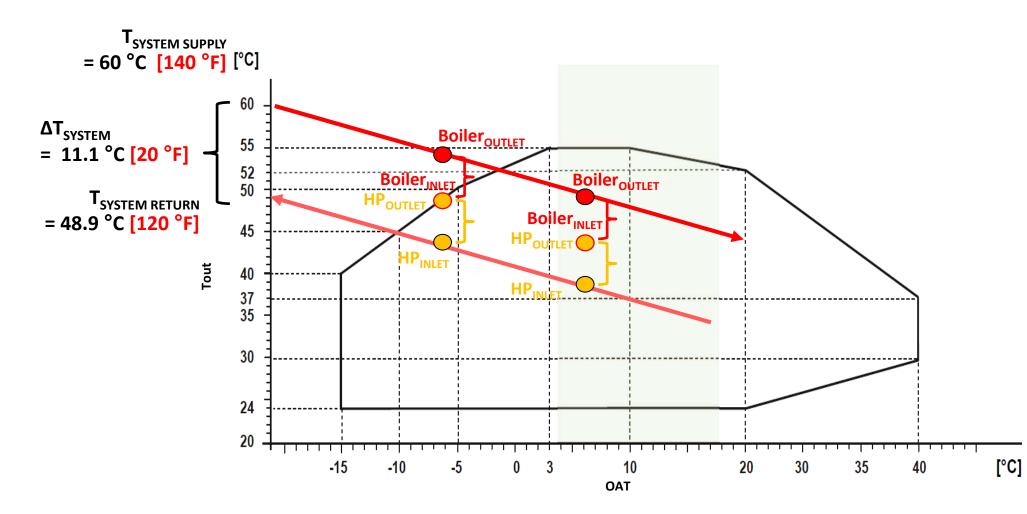
INCORPORATING OTHER MEASURES (ENVELOPE UPGRADE) ARE EQUALLY IMPORTANT

- LESS HEAT LOSS = REDUCED RETROFIT EQUIPMENT SIZING
- REDUCED POWER REQUIREMENT FOR ELECTRIFIED HEATING RETROFITS

DUAL FUEL PROVIDES BUILDING RESILIENCY


- LEVERAGE EXISTING NATURAL GAS INFRASTRUCTURE WHERE IT MAKES SENSE
- FLEXIBILITY TO MANAGE CARBON FOOTPRINT OR OPERATING COST VIA ENERGY MANAGEMENT STRATEGY
- TRANSITION TO LOWER EMISSION NATURAL GAS WITH RNG OVER TIME
- FUTURE PROOFED BUILDING: ATW HP TECHNOLOGY IMPROVEMENT AT END OF LIFECYCLE
- ELECTRICAL GRID CAPACITY MANAGEMENT
- TRANSFORMATION OF FINANCIAL/BUSINESS CASE TO SUPPORT LOW-CARBON TRANSITION
 - OPERATING OR FIRST COST IS NO LONGER THE GOVERNING CRITERIA
 - RETROFIT CODE & TARGETS WILL ACCELERATE ADOPTION
 - FINANCIAL SUPPORT FOR PRIVATE SECTOR + FUEL SWITCHING PROJECT SUPPORT WILL LAUNCH ATW INTO MAINSTREAM

QUESTIONS?


DESIGN CONSIDERATION: AUXILIARY HEAT

AUXILIARY HEATING IN SERIES:

DESIGN CONSIDERATION: AUXILIARY HEAT

AUXILIARY HEATING IN SERIES:

